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This work presents the three-dimensional (3D) modeling of magnetostrictive materials. For the underlying dynamic magneto-elastic 

problem, mechanical displacements and vector magnetic potential are chosen as the working variables. Different field quantities are 
discretized with appropriate types of elements defined on nodes, edges, facets or volumes (Whitney elements). To account for the 
dependency of material constants on the stress and the magnetic field, the Discrete Energy-Averaged Model (DEAM) is incorporated 
into our finite element model (FEM), which, at the same time, involves a hierarchy of structures – with DEAM solved on the 
microscopic structure and FEM on the macroscopic structure. It also brings up nonlinearity that can be effectively resolved following a 
piece-wise linear approach. Representative numerical examples are also presented. 
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I. INTRODUCTION 
AGNETOSTRICTIVE materials, thanks to their bi-

coupled magneto-elastic features, are witnessing increas-
ing interests in energy transmitting [1] and magnetic field 
sensing [2], to name a few. For the design of systems consist-
ing of magnetostrictive materials, practical 3D magnetostric-
tive models are of critical importance. However, the develop-
ment of such models is challenging: the underlying phenome-
non is multiphysics, involving elasto- and magneto-dynamics 
on the macroscopic structure; additionally, material properties 
are nonlinear functions of stresses and magnetic fields, which 
requires calculating material constants with constitutive mod-
els on the microscopic structure. In this regard, most previous 
work found in the literature only addresses the issue partially.  

On the macroscopic level, a considerable amount of magne-
tostrictive models, among the reported ones, are implemented 
via commercial packages like COMSOL Multiphysics. In this 
fashion, single field interfaces are predefined while couplings 
need to be established by the modeler. As introduced in [3], 
for example, the magnetostrictive coupling is introduced 
through specifying initial stresses and remanant flux densities 
as functions of respectively, magnetic field and mechanical 
strain. Obviously, implementing material constitutive models 
or any other un-predefined couplings is cumbersome, if ever 
feasible. Others, which do not rely on commercial packages, 
consist in enforcing the coupling in a weak manner; namely, 
magnetic and elastic problems are solved individually while 
couplings are enforced by adding additional magnetic or me-
chanical force terms [4]. The side effect of this approach is 
that data needs to be transferred between physics; iterations 
are also needed to assure equilibrium, which sometimes se-
verely deteriorates the efficiency. Recently, a strongly coupled 
magnetostrictive model is presented in [5] where magnetic and 
elastic problems are solved simultaneously, based on the same 
mesh and eventually, resulting into a single block of discrete 
system, thus avoiding shortcomings of the former approach. 
Nonetheless, nodal elements are used for all quantities includ-
ing the vector magnetic potential 𝐴, which is impractical from 
the implementing viewpoint. Moreover, the electrical potential 

𝜙 is not considered in it, although it has been proved previous-
ly that in such cases the 𝐴 − 𝜙 formulation is more suited in 
terms of numerical stability and convergence rates [6].  On the 
microscopic level, early magnetostrictive constitutive models, 
e.g. the modified Preisach model and the Jiles-Atherton model, 
consist in adapting ferromagnetic models to incorporate mag-
netostrictive couplings. As commented in [7], these models 
suffer from the insufficiency of accuracy. On the other hand, 
the more advanced magnetostrictive constitutive models con-
sist in evaluating energy terms related to magnetocrystalline, 
magnetoelastic and magnetic fields along various orientations 
of magnetization. Then, the probability of a certain orientation 
is decided by the amount of the sum of the former energy 
terms, while the bulk magnetization and magnetostriction are 
obtained by considering all concerned orientations. Examples 
of such models are the modified Armstrong model [8] and 
DEAM [9], whose total number of considered orientations are 
respectively, 98 and six. In practice, DEAM is preferred due to 
its efficiency and ease to integrate with macroscopic models.  

In this work, we build our 3D magnetostrictive model in a 
Whitney elements based framework, in which the advanced 
constitutive model is elaborated in a straightforward way. As 
such, dynamic elastic and magnetic fields are modeled in a 
unified way, thereby the magnetostrictive coupling is added 
naturally. Compared with previous 3D magnetostrictive 
models, ours is more advantageous in that it automatically 
preserves field properties on the continuous level after 
discretization. Also, it paves the way to integrate with 3D 
piezoelectric models (see e.g. [10]) when the magnetostrictive 
material is employed in two-phase magnetoelectric composites. 
Regarding the integration of FEM and DEAM, the former is 
resolved over all elements with material coefficients 
calculated using the latter, which is resolved over single 
elements and takes as inputs state variables extracted from the 
solution of FEM. The piece-wise linear approach is adopted in 
order to address nonlinearities involved during the process. In 
the rest of the digest, the FE formulations, implementation of 
DEAM, and some simulation results are presented. More 
details will be provided in a future extended version. 
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II. THE 3D MULTIPHYSICS MODELING PROCESS 

A. Magnetostrictive constitutive equations 
Constitutive equations of magnetostrictive materials [11], 

which state the relationship between magnetic and elastic 
quantities in the material, are expressed as in Eq. (1).  

 
𝑇%& = 𝑐%&)*+ 𝑇, 𝐻 𝑆)* − ℎ)%& 𝑇, 𝐻 𝐵)

𝐻% = −ℎ%)& 𝑇, 𝐻 𝑆)* + 𝜈%&3 𝑇, 𝐻 𝐵)
 (1) 

where 𝑇 indicates the stress, 𝑆 strain, 𝐻 the magnetic field, 𝐵 
magnetic induction; 𝑐%&)*+  are elastic coefficients at constant 
magnetic field, 𝜈%&3  reluctivities at constant strain, and ℎ)%& the 
magnetostrictive coupling coefficients.  

B. The discrete energy-averaged model (DEAM) 
As noted from above, material coefficients are dependent of 

state variables 𝑇 and 𝐻 . Here we implement DEAM for the 
calculation of the coefficients. Fig. 1 depicts the simulation 
results of Galfenol with our implementation, which is verified 
with experimental measurements found in [12].  

  
Fig. 1. Simulation results of nonhysteretic magnetostriction and magnetization 
for 100 𝐹𝑒89.;𝐺𝑎98.; at various stress and magnetic field levels. 

C. Finite element discretization 
The FE system is established by combining equilibrium 

equations (i.e. balance of linear momentum for elastodynamics, 
and the Maxwell’s Equations for magnetodynamics) and the 
constitutive equations. Next, working variables are introduced 
before the weak form is obtained. Finally, quantities are 
interpolated with corresponding Whitney shape functions, 
which yields the discrete system after assembling. Our FE 
model can be applied to model magnetostrictive materials 
under various mechanical / magnetic conditions.  

III. NUMERICAL EXAMPLES 
On top of the developed 3D model, we perform simulations 

of a magnetostrictive unimorph (i.e. cantilevered beam) whose 
operating scenario consists of superpositioning a harmonic 
magnetic excitation of small amplitude onto a properly biased 
point. As a result, simulations are carried out on two stages: 
we first solve a nonlinear static problem from which material 
coefficients at the biased condition are found; to calculate the 
dynamic response, a linear dynamic problem is resolved in 
which material coefficients are incremental and supposed to be 

constant and taken directly from the previous stage. The 
following two figures show part of the simulation results from 
both stages.    

   

 
Fig. 2. Convergence study of the piece-wise linear approach (static). 
 

 
Fig. 3. Deformation (scaled for representation purpose) of a magnetostrictive 
unimorph under magnetic excitations in the length direction (dynamic). 
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